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NOMENCLATURE 

thermal diffusivity ; 
cross-sectional area ; 
latent heat of fusion ; 
heat flux ; 
time ; 
temperature ; 
temperature of a cold medium ; 
temperature given at the position x0 for the boundary 
condition of the first kind; 
solidification temperature ; 
position coordinate ; 
position, through which heat is removed ; 
transformed position coordinate defined in equation 

(6); 
heat-transfer coefficient ; 
transformed coordinate of the phase boundary 
defined in equation (7) ; 
thermal conductivity ; 
coordinate of the phase boundary; 
density in the solid phase. 

1. INTRODUCTION 

THE APPLICATION of solutions to the unsteady heat conduc- 
tion problem with change of phase is of great practical 
importance. For example, the problem of ice formation is 
very significant both in geophysics and in ice manufacture. 
A great deal of attention has been given to the solidification 
of castings. In aerospace studies the ablation problem is 
encountered when a body moves with hypersonic velocity 
through the earth’s atmosphere. The characteristic feature 
of such problems is the coupling of the temperature field 
with the rate of propagation of the phase boundary between 
the solid and liquid phases, which makes the problem non- 
linear Only a few exact analytical solutions have been 
found for special cases For example, the Neumann’s 
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solution (see Carslaw and Jaeger [l]) relates to the soliditica- 
tion of the semi-infinite region of liquid, initially above or 
at the fusion temperature, when the surface wall temperature 
is suddenly decreased to and maintained at a temperature 
below fusion. 

With regard to the non-linear problem in which the 
position of the phase boundary is unknown, solutions are 
expected to be obtained by analytical approximations and 
numerical methods. For example, the heat balance integral 
method was used by Goodman [2], Goodman and Shea 
[3] and Poets [4]; the variational method by Biot [S] and 
Biot and Daughaday [6]; the method of moving heat 
sources by Rosenthal [7] and Jackson [8]. Lin [9] used a 
transformation to obtain relations for calculation of the 
rate of propagation of the phase boundary in cylindrical 
and spherical coordinates from that in Cartesian coordi- 
nates. Using the polynomial approximation, Megerlin [lo] 
derived equations for this rate in the planar case with 
different boundary conditions, and then used the relations 
in [9] to obtain the cylindrical and spherical cases An 
excellent review in the fiekl of heat conduction with freezing 
or melting was given by Muehlbauer and Sunderland [ 111. 

In the present work, the relations in [9] am extended. 
We consider a freezing or melting process, which takes place 
in a body with a variable cross-sectional area We denote 
the length of the central line of the body by x, and assume 
that (1) the body is insulated from the surroundings, (2) 
the radius of curvature of the central line is very large and 
(3) the change of cross-sectional area with x is relatively 
small. With these assumptions, the temperature distribution 
across the central line can be taken as constant. Then the 
problem can be treated as one-dimensional. In order to 
deal with the problem easily, we assume further that the 
densities in the liquid and solid phases are kept constant 
and that convection in the liquid phase is negligible. 

The freezing and the melting process can be described 
by the same mathematical formulations. In the following, 
only the freezing process will be discussed The results are 
applicable for the melting process. 
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2. ONE-DIMENSIONAL FREEZING PROCESS 

TQ simplify the problem, the entire fluid is assumed at the 
beginning of the freezing process to be at the solidification 
temperature, TV Ah of the mate&i properties am taken to 
be constant. 

The equation of one-dimensional heat conduction can be 
easily derived as [12] 

aT l?T xh) a7- 
--_-(I 

at ( -*___. , 

ax2 A(x) ax ) 

In practice, however, we are especially interested in the 
rate of propagation of the phase boundary, or simply, the 
interface velocity dF/df [equation (3)], Hereafter, we will 
concentrate on solving the problem of this interface velocity. 

The method of solving the probkm of the interface velocity 
consists of three steps: (1) transformation of the position 
coordinate, (2) description of the temperature field and 
(3) consideration of the temperature distribution in the 
neighbourhood of the phase boundary. 

where T is the temperature, t the time, Q the thermal dif- 2.l T~~ns~o~~~~r~~ of the position coordinate 

fusivity, x the position coordinate, A(x) the cross-sectional For the transformation of the position coordinate, the 

area, and A’(x) the first derivative of A(x). The initial following equation is used : 
condition is obvious, for x & x0 and t = 0; 

T(n, 0, = T,. (2) 
y = 4x0) 

s 
$$ (6) 

%I 
The boundary conditions at the phase boundary x = c(t) 
for t z 0 are The coordinate of the phase boundary r is similarly trans- 

formed by 

and 

(3) 
(7) 

T(5, f) = T, 44) With these ~nsformation~ we obtain from equat~ons(l~S~ 

where iL and p are the thermal conductivity and density 
a new system of equations, which describe the problem: 

in the solid phase, respectively, and L is the latent heat of a?- A(x,) *av 
fusion. ‘Z =aAo 2’ [ I (8) 

Far the boundary condition at the surface .Y = x0, 
through which heat is removed, any one of the following Tfy, 0) = r,, (9) 

conditions may apply: for 

and t>O: .y f x0 
T(xe, r) = T,, 

boundary condition of the first kind given by the surface 
temperature 7-0, 

(5.2) Or 12 iiT@, rl 
- = a[T(O, t) - T-J. 

rtrr 
(12.3) 

boundary condition of the second kind given by the heat 
flux 4, or 

a Wx,, rf __-- = a[Tix,,al - T,]? 
ax 

(5.3) 

boundary condition of the third kind given by the heat 
transfer with convection, where G[ is the heat transfer 
coefftcient and z is the temperature of the cold medium. 

To solve this problem, we must find the salution of the 
differential equation (l), which satisfies the initial and boun- 
dary conditions (2)--(4) However, the boundary condition 
(3) is an unknown function which depends upon the tempera- 
ture gradient at the phase boundary, or in other words, 
depends upon the solution of the problem This therefore 
makes the problem very complicated. 

“7 

2.2 Description of the temperature field 
The temperature ‘I” is a function of position y and time t. 

Between the time t and the coordinate of the phase boundary 
n_ them isa certain relation with tf = n(r) or inversely t = t(n). 
Therefom the temperature function can be written 

(13) 

The selection of the coordinatea p and n(i) for ti temperature 
function has two advantages; one is that the position of the 
phase boundary in the y - q plane is simply a straight line 
with y = n (Fig l), and the other is that the derivative of the 



SHORTER COMMUNICATIONS 155 

temperature function with respect to time is equal to 

dT aTdq 

at - aq dt 
(14) 

This means that the derivative of the temperature function 
with respect to time contains the interface velocity, which 

FIG. 1. Regions for the temperature distribution in the 
neighbourhood of the phase boundary. (a) and (b) are the 
coordinate systems before and after the transformation of 

position coordinate, respectively. 

has the form in the y - q plane, in the neighbourhood of the phase boundary in the y - q 
plane : 

(a) 

We have the factor [A(x)/A($j’ in the neighbourhood of 
the phase boundary, and with the limit Ax + 0: 

We then have the system of equations (161 (9), (11) and (12) 

lb) 

dq h -4-d * a%, q) 

[ 1 _=_ ~ 
dt pL A(r) 7’ 

(15) 

If we put the equation of interface velocity (15) into equation 
(141 and then put equation (14) into the differential equation 
(8), we have 

a*T 1 At.4 a aT(q, q) aT --_ _ 
[ 1 a? - UPL A(5) 

--. 
ay aq 

(16) 
This is clearly non-linear. 

2.3 Consideration of the temperature distribution in the 
neighbourhood of the phase boundary 

From equation (15) we see that the interface velocity 
depends only upon the temperature gradient at the phase 
boundary. If the temperature distribution in the neighbour- 
hood of the phase boundary is known, then the interface 
velocity can be determined We consider the temperature 
distribution in the neighbourhocd of the phase boundary 

in the regions r - Ax C x < 5 and q - AY G Y < q for 
the coordinate systems before and aft= the transformation 
of position coordinate, respectively (Fig 1) The function of 
the cross-sectional area in the neighbourhood of the phase 
boundary can be obtained with the Taylor’s series, 

A(x) = A(5 - E) = A(c) - &A’(t) + 

with 0 < E < Ax. (17) 

a2T 2. aT(q, q) JT _=-____ 
ay2 apL ay all ’ 

(19) 

and 

T(y, ‘3 = 7-s 

Th q) = T, 

T(0, q) = T,, 

(20) 

(21) 

(22.1) 

law, 4 

T=q 
A am, q) 

- = a[T(O,q) - T,]. 
ay 

(22.2) 

This system of equations is now independent of the cross- 
sectional area The solution of the temperature T and of the 
temperature gradient aT/ay of this system must be unioersal 
functions which are available for all kinds of cross-sectional 
areas. 

The interface velocity is described by the equation (15). 
For the special case A(x) = const., we have 

drl 0 A Wq. q) 
z = - - = g(q). 

A(x,=Consc. PL ay 
(23) 

We then have the interface velocity for a variable cross- 
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sectional area A(x), As the interface velocity for constant cross-sectional area is 

known, the interface velocity for variable cross-sectional area 
(24) can therefore be calculated. 
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d5 0 z = g(4 
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then the interface velocity of the freezing or melting process 
in a body with variable cross-sectional area A(x) is 

provided that the initial and boundaT condition& with the 
exception of the interface velocity, after the transformation 
of position coordinate, equation (6), for both these cases are 
the same. 

It is obvious that, using the same process as above, we 
can prove that this theorem is also true for other initial and 
boundary conditions; for example, where the initial tem- 
perature is different from the solidification temperature and 
another boundary condition takes place at a surface else- 
where, x = x1. 

For special cases in cylindrical and spherical coordinate 
systems with A(x),,,, = 2nlx and A(x)+_~ = 4nx*, we 
obtain 

I. 

2. 

4. 

5. 

and 

IO. 
These results are the same as in [9]. 

The exact solution of the interface velocity in a body with 
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